Quantenphysik

Die Quantenphysik umfasst alle Phänomene und Effekte, die darauf beruhen, dass bestimmte Größen nicht jeden beliebigen Wert annehmen können, sondern nur feste, diskrete Werte (siehe Quantelung). Dazu gehören auch der Welle-Teilchen-Dualismus, die Nichtdeterminiertheit („Zufälligkeit“) von physikalischen Vorgängen und deren unvermeidliche Beeinflussung durch die Beobachtung. Quantenphysik umfasst alle Beobachtungen, TheorienModelle und Konzepte, die letztlich auf die Quantenhypothese von Max Planck zurückgehen. Plancks Hypothese war um 1900 notwendig geworden, weil die klassische Physik z. B. bei der Beschreibung des Lichts oder des Aufbaus der Materie an ihre Grenzen gestoßen war.

Besonders deutlich zeigen sich die Unterschiede zwischen der Quantenphysik und der klassischen Physik im mikroskopisch Kleinen (z. B. Aufbau der Atome und Moleküle) oder in besonders „reinen“ Systemen (z. B. Supraleitung und Laserstrahlung). Aber auch ganz alltägliche Dinge wie die chemischen oder physikalischen Eigenschaften verschiedener Stoffe (FarbeFerromagnetismuselektrische Leitfähigkeit usw.) lassen sich nur quantenphysikalisch verstehen.

Die theoretische Quantenphysik umfasst die Quantenmechanik und die Quantenfeldtheorie. Erstere beschreibt das Verhalten von Quantenobjekten unter dem Einfluss von Feldern. Letztere behandelt zusätzlich die Felder als Quantenobjekte. Die Vorhersagen beider Theorien stimmen außerordentlich gut mit den Ergebnissen von Experimenten überein.

Eine wichtige offene Frage ist die Beziehung zur allgemeinen Relativitätstheorie. Trotz großer Bemühungen hin zu einer Theorie von Allem konnten diese großen physikalischen Theorien des 20. Jahrhunderts bisher nicht in einer Theorie der Quantengravitation zusammengefasst werden.

Quantenmechanik

Die Quantenmechanik ist eine physikalische Theorie, mit der die Eigenschaften und Gesetzmäßigkeiten von Zuständen und Vorgängen der Materie beschrieben werden. Im Gegensatz zu den Theorien der klassischen Physik erlaubt sie als Grundlage der Quantenphysik die zutreffende Berechnung physikalischer Eigenschaften von Materie bis zum Größenbereich der Atome herab und weiter darunter. Die Quantenmechanik ist eine der Hauptsäulen der modernen Physik. Sie bildet die Grundlage zur Beschreibung von Phänomenen der Atomphysik, der Festkörperphysik und der Kern- und Elementarteilchenphysik, aber auch verwandter Wissenschaften wie der Quantenchemie.

Quantencomputer

Ein Quantenprozessor bzw. Quantencomputer ist ein Prozessor, der die Gesetze der Quantenmechanik nutzt. Im Unterschied zum klassischen Computer arbeitet er nicht auf der Basis makroskopischer Zustände elektronischer Schaltkreise, sondern quantenmechanischer Zustände geeigneter Systeme. Damit ist es möglich, im Laufe der Rechnung Superpositionszustände und Quantenverschränkung zu erzeugen, die beide für die Informationsverarbeitung in Quantencomputern entscheidend sind.

Quantenalgorithmen könnten die Berechnungszeit für viele mathematische und physikalische Problemstellungen deutlich verringern. Beispielsweise zeigen theoretische Studien, dass Quantenalgorithmen bestimmte Probleme der Informatik, z. B. die Suche in extrem großen Datenbanken (siehe Grover-Algorithmus) und die Faktorisierung großer Zahlen (siehe Shor-Algorithmus) effizienter lösen können als klassische Algorithmen.

Geprägt wurde der Begriff auf der ersten Conference on the Physics of Computation am MIT im Mai 1981 durch die Vorträge der Physiker Paul Benioff und Richard Feynman über quantum computing. Benioff präsentierte seine Arbeit, die zeigte, dass Computer unter den Gesetzen der Quantenmechanik arbeiten können. Feynmans Vortrag stellte erstmals ein Grundmodell für einen Quantencomputer vor.

Der Quantencomputer blieb lange ein überwiegend theoretisches Konzept. Es gab verschiedene Vorschläge, wie ein Quantencomputer realisiert werden könnte, in kleinem Maßstab wurden einige dieser Konzepte im Labor erprobt und Quantencomputer mit wenigen Qubits realisiert. Der Rekord lag im November 2021 bei 127 Qubits für den Prozessor und ein Jahr später bei 433 Qubits. Neben der Anzahl der Qubits ist aber auch zum Beispiel eine geringe Fehlerquote beim Rechnen und Auslesen wichtig und wie lange die Zustände in den Qubits fehlerfrei aufrechterhalten werden können.

Seit 2018 investieren viele Regierungen und Forschungsorganisationen sowie große Computer- und Technologiefirmen weltweit in die Entwicklung von Quantencomputern, die von vielen als eine der entstehenden Schlüsseltechnologien des 21. Jahrhunderts angesehen werden.

Quantum computing: Facts about the ultra-powerful computers that use quantum mechanics | Live Science

Creative Commons License
Except where otherwise noted, the content on this site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.